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A model of spin-torque-induced magnetization dynamics based on semiclassical spin diffusion theory for a
single-layer nanocontact is presented. The model incorporates effects due to the current-induced Oersted field
and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave struc-
tures. Directionally controllable collimated spin-wave beams, vortex spiral waves, and localized standing
waves are found to be excited by the interplay of the Oersted field and the orientation of an applied field. These
fields act as a spin-wave “corral” around the nanocontact that controls the propagation of spin waves in certain
directions.
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The flow of sufficiently large dc current through a thin,
nanomagnetic structure can give rise to precessional magne-
tization dynamics at gigahertz frequencies.1 This remarkable
effect has attracted broad interest, both from the standpoint
of fundamental physics and in the context of applications.
The underlying physics of these spin torque devices is based
upon the ability of thin ferromagnetic layers to act as spin
filters when current flows through the layers. For spin torque
effects to manifest, a source of spin-polarized carriers with a
component perpendicular to the magnetization of a layer is
required. A typical spin torque multilayer has two primary
magnetic layers: a fixed layer that acts as a spin “sieve” that
induces a spin accumulation in a nonmagnetic spacer layer
and an active layer that can respond dynamically when it
absorbs the angular momentum from the accumulated spins.
If the active layer has a uniform magnetization, a torque is
produced only when the two layers are misaligned.2

On the other hand, if the magnetization is not uniform,
theory for even a single magnetic layer predicts a nonzero
torque with resulting dynamics.3,4 Single-layer spin torque
theory was used to explain differential resistance data in me-
chanical nanocontact experiments5 and in lithographically
defined nanopillars.6 Theoretical studies have considered
single-layer nanocontact devices,7 but have not addressed the
response of a physically realistic, finite-sized nanocontact
with its accompanying Oersted field generated by the dc cur-
rent flowing through the device.

In general, the total spin accumulation, and hence spin
torque, in a magnetic thin film device arises from the lateral
and longitudinal diffusion of spins, transverse and parallel to
the current direction, respectively.4 The oft used Slonczewski
model of spin torque in trilayers, however, assumes a uni-
form spin accumulation and incorporates only longitudinal
spin diffusion effects.2

In this paper, we report a realistic treatment of a single-
layer device including lateral and longitudinal spin diffusion,
the Oersted field, and a large enough sample geometry to
capture novel behavior. Using a novel micromagnetic simu-
lator, we demonstrate unexpected features of the response,
including localized standing waves, vortex spiral waves, and,
most strikingly, a weakly diffracting collimated beam of spin
waves, the direction of which can be steered by changing the
direction of an applied magnetic field. The formation of the

beam appears to be a novel physical mechanism involving
the hybridization of a localized standing wave and a vortex
spiral wave. It has been previously shown that spin waves
emitted from nanocontact devices can be used to phase-lock
two spin torque oscillators.8 The ability to steer a spin-wave
beam with magnetic field could offer a method to selectively
control phase locking of multiple spin torque oscillators in an
array structure.

The outline of this paper is as follows. First, we describe
a two-dimensional �2D� model of spin torque in single-layer
nanocontact devices. We then present micromagnetic simu-
lations that demonstrate the wide variety of responses men-
tioned above. Finally, we explain the results of the simula-
tions using a local formulation of the linear spin-wave
dispersion relation above and below the nanocontact, show-
ing how the applied and Oersted fields act as a spin-wave
“corral” enabling directional control of anisotropic spin-
wave propagation and localized excitations. We also show
that this corralling effect is limited neither to this particular
model nor the details of spin torque.

The physical system we analyze is pictured in Fig. 1 and
is similar to the one theoretically studied in Ref. 4 except
that we explicitly treat the finite contact area and Oersted
fields. A single ferromagnetic Ni80Fe20 �Py� layer is adjacent
to two copper �Cu� leads and an insulator. The current flows
uniformly in the −ẑ direction �electron flow is in the +ẑ di-
rection� from a right reservoir located at z= tR+ t, through a
cylindrical Cu lead of radius r�, across a Py layer of thick-
ness t at z=0, over to a left reservoir at a distance tL away
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FIG. 1. �Color online� Single-layer nanocontact device sche-

matic. The spatially nonuniform Oersted field h�oe is generated by
the dc current I.
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from the magnetic layer �z=−tL�. The length tR is an effec-
tive distance over which the current is assumed to maintain
quasiunidirectional flow. The magnetic layer is assumed to
have infinite extent in the xy directions. When we refer to the
region above �below� the nanocontact, we mean the positive
�negative� direction along the y axis.

We calculate the spin accumulation due to current flow
through a ferromagnet using the same method described in
Ref. 4. We consider the behavior of the spin accumulation in
the nonmagnet in response to a nonuniform magnetization

M� =Msu� , where Ms is the saturation magnetization. As in
Ref. 4 we treat the case of small deviations u�� away from the
spatially averaged “equilibrium” direction u� �. The transverse
and longitudinal components of the spin accumulation m�
=m� �+m� �, where m� � points in the longitudinal direction of the
steady-state spin accumulation in the absence of any mag-
netic inhomogeneity, can be decoupled in this limit. We solve
the multipoint boundary value longitudinal problem to find
the longitudinal spin accumulation m� and spin current Qzz
for each interface. For deviations at a particular transverse
wave vector �kx ,ky�, the transverse spin accumulation is then
given in terms of the deviations in the magnetization and the
longitudinal solution

F�m� �� = F�u���
�Qzz + w0m�

D� coth�l��� + w0
,

� = �kx
2 + ky

2 + 1/lsf
2 �1/2, �1�

where F�m� �� and F�u��� are the 2D Fourier transforms of
the transverse spin accumulation and the magnetization
transverse to the average, respectively �+ for right z= t inter-
face and − for left z=0 interface�. The decoupling of the
longitudinal spin accumulation from the transverse spin ac-
cumulation is strictly valid only in the limit of small devia-
tions from a uniform magnetization distribution. In our case,
the deviations from uniformity are not small, so this treat-
ment should be considered to be a first-order approximation.
The distance to the reservoir l� is tL or tR for the left and right
interfaces, respectively. The spin diffusion length lsf and dif-
fusion constant D are material parameters for Cu; w0 is the
effective interfacial spin absorption rate.

To calculate the transverse spin accumulation in real, po-
lar coordinate �r ,�� space, we take the inverse Fourier trans-
form of Eq. �1�. Then the expression for m� �, Eq. �A1� �see
the Appendix�, is the convolution of the magnetization with a
weakly singular kernel over the point-contact region. This
nonlocal formulation of the transverse spin accumulation can
be interpreted as the lateral diffusion of spins interacting
with a given magnetization distribution.

We find the quasi-steady-state spin accumulation for a
given instantaneous magnetization distribution in the Py
layer. This is justified because the ratio of the time scales for
the diffusion of electrons to a steady state and for the mag-
netization dynamics is about 0.001. By formulating the cal-
culation of the inhomogeneous transverse spin accumulation
in terms of a simple convolution operation, we have greatly

improved the speed of simulating this effect as compared to
directly calculating the coupled magnetization and spin
accumulation.9

We use the average magnetization direction over the con-
tact û�, Eq. �A2�, as the orientation of the longitudinal spin
accumulation. Physically, this corresponds to the situation
where a spin scattered a large number of times from the
interface effectively “sees” the average magnetization. The
total spin accumulation inside the nanocontact m� �, Eq. �A3�,
is then calculated by summing the contributions to the lon-
gitudinal and transverse accumulation from each interface.
Because an insulator surrounds the Cu leads in our model,
the spin accumulation outside the nanocontact is zero.

The dynamical equation for the magnetization is

�u�

��
= − u� � h�eff − �u� � �u� � h�eff� + 	u� � �u� � m� �� ,

h�eff = h�0 − uzẑ − g�r��̂ + 
�2u� , 	 =
�w0

2t�0Ms
2 . �2�

This is a modified 2D Landau-Lifshitz equation in dimen-
sionless form with time normalized by �0Ms � is the
gyromagnetic ratio, �0 the permeability of free space�. In
Eq. �2�, space is normalized by r�, fields and magnetization
are normalized by Ms, � is the damping constant, 

=Dex / ��0Ms�r�

2� is the coefficient of the exchange term
�Dex is the exchange parameter, � Planck’s constant divided

by 2��, h�0=h0�sin��0�cos��0� , sin��0�sin��0� , cos��0�� repre-
sents the canted, normalized applied field ��0 is measured
from the positive z axis, �0 measured counterclockwise from
the positive x axis�, −uzẑ is the axial demagnetizing term, and

h�J�r ,��=−g�r��̂ is the nonuniform Oersted field due to the
current density J�r� defined below. The driving torque is
similar to the Slonczewski torque for a trilayer device2 ex-
cept that here the torque is nonlocal. We have only consid-
ered the leading-order axial component of the dipole field,
−uzẑ, which is independent of film thickness t. The calcula-
tion of higher-order terms involves integration over the fer-
romagnetic volume, which greatly complicates the solution
of Eq. �2�. Higher-order correction terms for such dipole
fields have been derived by Arias and Mills.10 Such correc-

tion terms scale as t�� ·u� and have quantitative significance
for large film thicknesses.

The Oersted field is significant in the nanocontact geom-
etry, with a maximum magnitude on the order of 80 kA/m
�1000 Oe� for r�=40 nm and I=21 mA. Thus, to ignore the
Oersted field, as was done in previously presented multilayer
simulations,11 is not an appropriate approximation. We will
demonstrate that the Oersted field significantly affects the
response of the system. Now we derive the Oersted field for
the geometry shown in Fig. 1.

The current density J��r� ,z�� in dimensional units �r� ,z��
is modeled as
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J��r�,z�� = r̂
I

2�Dpr�

F�r���H�z� − t − tR�H�t + tR + Dp − z��

− H�− tL − z��H�z� + tL + Dp��

− ẑ
I

�r�
2H�r��H�r� − r��H�t + tR − z��H�z� + tL� ,

F�r�� = �r�/r�, 0 � r� � r�,

r�/r�, r� � r�,
	 H�x� = �0, x � 0,

1, x � 0.
	

�3�

Two infinite parallel conductor plates of thickness Dp, sepa-
rated a distance tR+ t+ tL, are connected by a wire of radius
r�. Current flows into the wire from the right plate, through
the magnetic layer via a cylinder modeling the point contact,
and out of the wire into the left plate. The current flow in the
plates is assumed to be in the radial direction only. The co-
efficient of r̂ in �3� models the magnitude of the current
density in the plates, assumed uniform in the z direction.
Outside of the region where the wire connects to the plates
�r�r��, the current density falls off proportional to 1 /r,
whereas inside the region �r�r��, the current is proportional
to r. The current is assumed to flow uniformly down the wire
modeled by the coefficient of ẑ in �3�. This model of current
flow conserves the flux of current from the plates to the wire.

We are interested in the value of the Oersted field H� J, due to
the current density �3�, in the center of the magnetic layer
z= t /2.

Using a vector potential representation along with Fourier
and Hankel transforms, we solve for the Oersted field in
dimensionless units �r ,z�= �r� /r� ,z� /r�� �Ref. 12�:

h�J�r,�� = − �̂
I

Ms�r�� I1� r

r�
�

infinite wire

− I2� r

r�
�

finite wire correction

+
r�

MsDp�I3� r

r�
� + I4� r

r�
�

conductive plates

�� = − g�r��̂ .

�4�

The integrals in �4� are

I1��� = � �/2, 0 � � � 1,

1/2� , 1 � � ,
	

I2��� = 

0

�

e−qa/2 cosh�qz��J1�q�J1�q��
1

q
dq ,

I3��� = 

0

�

e−qa/2�1 − e−qd�cosh�qz��J0�q�J1�q��
1

q
dq ,

I4��� = 

0

�

e−qa/2�1 − e−qd�cosh�qz��J2�q�J1�q��
1

q
dq , �5�

where a= �tR+ t+ tL� /r�, d=Dp /r�, and z�= �tR− tL� /2r� are
the normalized wire length, conductive plate thickness, and
location of the magnetic layer, respectively. Jn are nth-order
Bessel functions of the first kind. Note that �4�, with I2= I3
= I4�0, is the result for the magnetic field due to an infi-
nitely long wire of radius r� with no conductive plates. The

magnitude of the Oersted field hJ�r�= �h�J�r ,��� in �4� de-
pends only on r.

By numerically evaluating the integrals �5�, we show
MshJ�r� for two contact sizes and a fixed current I=30 mA
in Fig. 2. The fields due to an infinitely long wire with no
conductive plates are also shown in Fig. 2 as dashed curves.
Equation �4� and the result for an infinite wire agree near the
point contact but the decay of the fields is faster for the
infinite wire case.

We implemented a numerical method to solve Eq. �2� in
polar coordinates �see Appendix�. The calculations are ren-
dered tractable by formulating the model in a nonuniform
polar coordinate grid, allowing us to compute over a large
domain �4.8-�m-diam disk� to avoid boundary spin-wave
reflections and with simulation times �3 ns� sufficiently long
to ensure that we have determined the true steady-state re-
sponse. By evolving Eq. �2� in time with a nonuniform initial
condition �where u� is relaxed in the presence of the effective
field only�, we find that the magnetization settles into a qua-
siperiodic state due to the competition between the spin ac-
cumulation torque and the damping. All excitation frequen-
cies are calculated from the time series of uy averaged over
the nanocontact by use of Fourier methods with a typical
resolution of 0.75 GHz. We use the physical parameters
listed in Table I of Ref. 4 except h0=1.1, r�=40 nm, tR
=5 nm, tL=75 nm, t=15 nm, Ms=800 kA /m, D�
=0.001 m2 /s �diffusion rate in Py�, lsf

FM =5.5 nm �spin dif-
fusion length in Py�, and Dp=50 nm.

Our calculations show a variety of behaviors that depend
on the physical parameters including vortex spiral waves
�Figs. 3�a� and 4�c��, spin-wave beams �Figs. 3�b� and 4�b��,
and localized standing waves �Figs. 3�c� and 4�a��. The di-
rection of spin-wave propagation in a canted field, �0�0,
depends on the applied field azimuthal angle �0 where the
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FIG. 2. �Color online� The magnitude of the Oersted magnetic
field �4� �solid line� and the Oersted field due to an infinitely long
wire with no conductive plates �dashed line�.
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spin-wave angle �0−90°. The top panels depict the spatial
variation of uy at a specific time, and the lower panels show
the energy density for each state. The energy density E�r ,��
is calculated by taking the time average of the squared mag-
nitude of the magnetization transverse to the average direc-

tion, E�r ,��= ��u� � �u���2�, where �f�= 1
T���

��+Tf d� and �� is the
time by which the magnetization has settled into a steady,
precessional state.

Our choice of a relatively thick Py layer emphasizes the
effect of the Oersted field. Larger currents are necessary to
excite thicker layers, so that the Oersted fields are larger.
Calculations with a thinner Py film still result in localized
standing waves, spiral waves, and anisotropic waves, but the
collimated beam is more difficult to excite.

The particular response excited can be explained, in part,
by appealing to the dispersion relation for a spin wave propa-
gating in a canted uniform field, Eq. �A4�. The local fields in
the regions above and below the nanocontact �on either side
of the nanocontact in the plane of the magnetic film� are of
different magnitudes and orientations due to the presence of
the nonuniform Oersted field −g�r��̂. The Oersted field acts
as a “corral” and effectively lifts the spatial degeneracy of
the dispersion relation immediately above and below the
nanocontact so that, at a given frequency, the spin waves
propagate in one direction and evanesce in the other.

The response away from the nanocontact does not
strongly depend on the details of spin torque except that the
spin torque is localized at the nanocontact. To show this, we

solved Eq. �2� with a localized ac applied field �h�ac�r ,� , t�
=hac sin�2�fac��ẑ, r�0.15, 0 elsewhere�, neglecting spin
torque. The response and the associated dispersion curves are
depicted in Figs. 5�a�–5�c� for I=30 mA, �0=10°, �0=0°,
and hac=1. We use the dispersion relation with the local
fields evaluated at r=1 to approximate which wave numbers
can propagate above �solid blue� and below �dashed black�
the nanocontact. The dash-dotted red curve is the far-field
dispersion curve where the Oersted field is negligible. The
Oersted field creates a gap between the dispersion curves
above and below the nanocontact. The type of response ex-
cited depends on the driving frequency fac and its relation to
the ferromagnetic resonance �FMR� frequencies �Eq. �A4�
with no exchange contribution, k=0� above �fFMR

+ �, below
�fFMR

− �, and far away from �fFMR
far � the nanocontact. When the
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FIG. 3. �Color online� Magnetization �uy� pattern and energy
density of a thin film excited by dc current through a nanocontact
with varied applied field canting angle �0=1°, 10°, and 21° in
��a�,�d��, ��b�,�e��, ��c�,�f��, respectively. All other system param-
eters are fixed �I=29 mA, �0=0�. The circle in the center repre-
sents the boundary of the nanocontact. The plotted domain is a
square 10 times the contact diameter per side. Magnitudes in each
panel are normalized; positive values are yellow, and negative val-
ues are black, with uy oscillating between approximately �0.8,
�0.6, and �0.65 in �a�, �b�, and �c�, respectively. The peak energy
density at r=10 in �d�, �e�, and �f� is, in arbitrary units, 0.74, 1.0,
and 0.15 respectively. Note the pinning of the vortex core in �a� and
�d�. The energy density plot in �e� clearly shows the weak diffrac-
tion of the spin-wave beam.
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FIG. 4. �Color online� Magnetization �uy� pattern and energy
density of a thin film excited by dc current through a nanocontact
with varied dc current I=18, 28.5, and 36 mA in ��a�,�d��, ��b�,�e��,
��c�,�f��, respectively. All other system parameters are fixed
��0=10° , �0=0°�. uy oscillates between approximately
�−0.37, 0.34�, �−0.53, 0.52�, and �−0.97, 0.87� in �a�, �b�, and
�c�, respectively. The peak energy density at r=10 in �d�, �e�, and �f�
is, in arbitrary units, 0.0051, 0.35, and 1.0, respectively.
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FIG. 5. �Color online� Band structure, excited frequencies, and
response energy density for three different driving frequencies: �a�
fac=10 GHz, �b� fac=16 GHz, and �c� fac=25 GHz. The solid
�open� circles correspond to the numerically determined wave num-
ber above �below� the nanocontact and agree with the linear disper-
sion relation. The FMR frequencies above and below the nanocon-
tact are fFMR

+ =20.2 GHz and fFMR
− =5.6 GHz, respectively. When

the drive frequency is in the gap between the upper and lower
dispersion relations, the second harmonic 2fac is also excited.
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driving frequency is between fFMR
− and fFMR

far , the excitation is
a standing wave �see Fig. 5�a��. When the driving frequency
is between fFMR

far and fFMR
+ , the excitation forms a spin-wave

beam �see Fig. 5�b��. When the driving frequency is above
fFMR

+ , the excitation is a nonlocalized propagating wave �see
Fig. 5�c��. This is the “corral” effect; the applied field and the
Oersted field act in concert to modify the availability of spin-
wave states in close proximity to the nanocontact, depending
upon the excitation frequency. In the locations where the
Oersted and applied fields add �above the nanocontact�, the
dispersion relation is shifted upward in frequency, thereby
acting as a “fence” to block spin-wave propagation if the
excitation frequency is below fFMR

+ . Where the Oersted and
applied fields cancel, the dispersion relation is shifted down-
ward in frequency, thereby acting as a trap, localizing the
spin-wave excitations until the excitation frequency exceeds
fFMR

far , whereupon the trap is no longer operative and the spin
waves are guided downward. The mechanism leading to the
standing wave is a linear phenomenon, in contradistinction to
previous calculations where nonlinear effects lead to the for-
mation of a localized magnetic excitation in a nanocontact
geometry.13 Even in the presence of a small driving field
�e.g., hac=0.001�, both the localized wave and the spin-wave
beam can be excited, precluding any strong role of nonlin-
earity in the localization of the response.

We can interpret the different spatial responses in Figs. 3
and 4 by plotting the excitation spectrum as a function of
applied field angle �Fig. 6� and applied dc current �Fig. 7�.
All future local FMR and dispersion curve calculations as-
sume the Oersted field −g�r��̂ is evaluated at the radius r
=r0=1.5. For currents close to the excitation threshold, the
response spectrum has a single-frequency peak that corre-
sponds to vortex spiral waves for small angles and a local-
ized standing wave for larger angles �see the inset of Fig. 6�.
The lowest available frequency response is excited. For
small angles, the localized wave is not available because
fFMR

far �yellow dash-dotted curve� is less than fFMR
− �white

dashed curve�, so spin waves can propagate to the far field
and the vortex spiral wave is excited. Above the critical
angle ��=sin−1�g�r0� / �2h0�� where fFMR

far = fFMR
− at the radius

r=r0, the localized wave with a much lower frequency is
excited because its frequency is below fFMR

far �see the vertical
dotted lines in Fig. 6�.

For larger applied currents, nonlinear effects appear to be
important. In Fig. 6, the vortex spiral wave is excited for
small angles for the same reasons mentioned previously.
However, the bifurcation in mode behavior occurs for angles
larger than �� where, now, there are two distinct frequency
peak branches in the spectrum that are not harmonically re-
lated. These branches lie just above fFMR

− and fFMR
+ �blue

solid curve�. In the small-amplitude case �Fig. 6, inset�, these
branches correspond to the localized standing wave and the
vortex spiral wave, respectively. Here, nonlinearity appears
to spawn a hybridization of the standing wave and the vortex
spiral wave, resulting in the spin-wave beam �see Figs. 3�b�
and 4�b�� As the angle is increased, the power associated
with each branch changes from being predominantly in the
vortex spiral wave branch to being predominantly in the lo-
calized wave branch and back again, resulting in a visual
change of the energy density as shown in Fig. 3�c� where the
standing wave is dominating the response.
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FIG. 6. �Color online� Nanocontact frequency spectrum as a
function of applied field polar canting angle �0 along with the local
FMR frequencies above �fFMR
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FIG. 7. �Color online� �a� Nanocontact frequency spectrum as a
function of dc applied current. �b�–�d� Local dispersion curves
evaluated above �blue solid curve�, below �black dashed curve�, and
far from �yellow dash-dotted curve� the nanocontact along with
numerically calculated wave numbers and frequencies. �b� The
circle is the wave number, frequency pair �k− , f−� calculated from
the localized wave in Fig. 4�a�. �c� The diamond �square� corre-
sponds to the wave number calculated above �below� the nanocon-
tact k− �k+� in Fig. 4�b�. The two frequencies f− and f+ are peaks in
the spectrum at I=28.5. �d� The diamond and square correspond to
the wave number, frequency pairs as discussed for �c�, but at the
current I=36 mA in Fig. 4�c�.
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This nonlinear hybridization is further investigated in Fig.
7 where the frequency spectrum is plotted as a function of
applied current �a� and associated local spin-wave dispersion
curves are plotted �b�–�d�. For small currents, the localized
standing wave is excited due to the corral effect �see Fig.
7�b� and compare with Fig. 5�a��. For large currents, aniso-
tropic waves are excited because the corral is partially open
�see Fig. 7�d��. For intermediate currents, between the verti-
cal dashed lines in Fig. 7�a�, both the localized wave and the
spiral wave are excited at the same time, but with different
frequencies f− and f+. It is only within this current range that
we observe the spin-wave beam. There is a single wave num-
ber associated with these two frequencies, k−, if the disper-
sion curve below �above� the contact is associated with the
localized standing wave �vortex spiral wave� �see Fig. 7�c��.
The spin-wave beam corresponds to a wave number k+ asso-
ciated with the dispersion curve below the contact, but with
the larger, vortex spiral wave frequency f+. These two fre-
quencies and two wave numbers form a triad in the disper-
sion diagram 7�c�. We interpret this behavior in the following
way:

�
�f+,k−� spiral

⇑
nonlinearity

�

�f−,k−� localized
� ⇒

hybridization
�f+,k+� beam.

Given the coarse approximations made in this analysis �lin-
ear, 1D behavior and pointwise evaluation of the Oersted
field, etc.�, the discussion provides a qualitative description
of the response selection in single-layer nanocontacts.

The results predicted here for nanocontacts stand in stark
contrast to calculations involving nanopillar structures14

where excitations are confined to a nanomagnet. In the latter
case, the Oersted field was shown to effect a small perturba-
tion to the magnetization dynamics. Here, the Oersted field
gives rise to the “corral” effect and is fundamental to the
formation of magnetic excitations.

We have also performed numerical simulations in trilayer
structures �ferromagnet/nonmagnet/ferromagnet�, neglecting
lateral diffusion and nonlocal effects and using the Sloncze-
wski torque2 in both our own simulator and in a conventional
micromagnetic simulation package �OOMMF� used by a
colleague.15 We find similar qualitative behavior such as the
corralling effect and a spin-wave beam. However, we do not
observe stable vortex spiral waves and the spatial depen-
dence of the excitations are different. For spin torque mag-
nitudes comparable to that of the single-layer torque dis-
cussed in this work, an unphysical, large spin transfer
efficiency of 0.7 was required. Theoretical calculations and
experimental observations suggest that the spin transfer effi-
ciency is between 0.25 and 0.4.2,16 Thus, we find that the
torque generated by a single layer with nonuniform magne-
tization can exceed that expected for a uniformly magnetized
layer in a trilayer structure, suggesting that inclusion of spin
diffusion effects considered here in trilayer calculations may
have significant quantitative impact. We note that the semi-
classical transport calculations in Ref. 4 used here do not

require the use of the spin transfer efficiency, an ad hoc
parameter, because the spin accumulation is directly calcu-
lated in an approximate, but self-consistent manner. We also
note that spin diffusion in a trilayer structure has been stud-
ied in a self-consistent manner in Ref. 17, but only the linear
instability was calculated �i.e., the threshold current for spin-
wave excitations� and the calculations were strictly for the
case of a uniform current density flowing through an infi-
nitely extended magnetic film without any consideration of
boundary conditions. We are currently extending our work to
the case of a trilayer nanocontact structure so that the spin
accumulation will be calculated in a self-consistent fashion,
precluding the need to invoke a spin efficiency factor.

In summary, we have used micromagnetics to predict the
generation of a variety of responses in single-layer, nanocon-
tact spin torque devices. A collimated spin-wave beam was
observed over a range of currents and applied field angles,
with the direction of the beam determined by the applied
field azimuthal angle. The interplay of the applied field and
the Oersted field act to form a spin-wave corral, effectively
trapping excitations under the nanocontact except along the
direction where the oscillation frequency matches available
propagation states.
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APPENDIX

The inverse Fourier transform of Eq. �1� gives

m� �
� � 


0

2� 

0

1

u���r�,��,���KL�R� + KR�R��r�dr�d��,

R�r�,��;r,�� � �r2 + r�2 − 2rr� cos�� − ��� , �A1�

where lengths have been normalized by the contact radius r�,
R is the distance between the reference �r� ,��� and source
�r ,�� points, � is time, and we have assumed the thin film
limit with �u�

�z =0. The kernels KL and KR are associated with
the left and right interfaces, respectively. Their general ex-
pression is

K�r� =
a

r



0

� J0�k�k dk

� coth�l�/r� + r/b
, b = D/�w0r�� ,

� � �k2 + �rd�2�1/2, d = r�/lsf, l = l�/r�,

a = r���Qzz + w0m��/�2�D� .

A plot of rK�r� /a is shown in Fig. 8 for the typical param-
eters considered in this work. The average magnetization di-
rection over the contact is
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û� �
u� �

�u� ��
, u� � �

1

�



0

2� 

0

1

u��r�,��,z,t�r�dr�d��,

�A2�

which we use as the orientation of the longitudinal spin ac-
cumulation. The total spin accumulation is

m� � = m� �
� + �mz�0� + mz�t��û�, u�� = u� − �u� · û��û� ,

�A3�

where the longitudinal spin accumulation is the sum of the
contributions from each interface z=0 and z= t.

For a uniform applied field of the form h��

=h��sin����cos���� , sin����sin���� , cos�����, the dispersion
relation for exchange spin waves in a thin film is

�2 = �
k2 + h� cos��e − ��� − cos2��e��

��
k2 + h� cos��e − ��� − cos�2�e�� , �A4�

where �e is the equilibrium magnetization polar angle satis-
fying h� sin��e−���− 1

2sin�2�e�=0.
We briefly discuss the numerical method we have used to

solve Eq. �2�. The polar coordinate system is a particularly
efficient and accurate choice for nanocontact simulations.
The discretization we use is nonuniform in radius �“inner”
and “outer” grids� and uniform in angle:

ri = q�i − 1/2� �
1

2
�drin + drout��i − 1/2�

+
1

2
�− drin + drout�w ln

��cosh� î − i + 1/2
w

��cosh� î

w
�� ,

� j = − � + �j − 1�d�, d� =
2�

M
,

i = 1, . . . ,N, j = 1, . . . ,M ,

where î and w are parameters determining the location and
width of the smooth change from the fine inner-grid spacing
drin to the coarser outer-grid spacing drout. The advantage of
this discretization is that we can solve on a uniform compu-
tational grid �i−1 /2,� j�, but the physical grid �ri ,� j� is clus-
tered in and around the point contact where the interesting
dynamics occur. The outer grid supports the propagation of
spin waves of the appropriate wavelength away from the
point contact. We choose a domain large enough 0�r�L,
L�1, so that wave reflections off the boundary do not affect
the solution inside the point contact. For comparison, our
simulations on a circular domain with diameter 2Lr�=2
�100�40 nm=8 �m involve MN=32�502=16 064 grid
points. A nonuniform grid in the Cartesian coordinate system
covering the same domain would involve 4N2=1�106 grid
points while a uniform grid would require 16�106 grid
points.

The boundary condition for Eq. �2� is the Neumann con-
dition �u�

�r �r=L ,� ,��=0. We approximate radial derivatives
using sixth-order finite differences and the angular derivative
u��� is calculated using a pseudospectral, fast Fourier trans-
form method. An explicit Runge-Kutta fourth-order time-
stepping method is used to advance Eq. �2� forward in time.
To avoid severe time-step restrictions due to the small grid
spacing near the origin, we apply a smooth, radial grid-
dependent angular mask gi�k� at every time step that filters
out numerically induced small wavelengths near the origin.18

The mask applied to positive angular mode k at the radial
grid point ri takes the form

gi�k� =
1

2
+

1

2
tanh� ki − k

�k
�, ki =

k0ri

2r1
,

and is evenly extended to negative k values.
Numerical parameters we use are drin=0.05, drout=0.25,

w=10 î=126, M =32, and N=342 for Figs. 6 and 7; î=273,
M =64, and N=455 for Figs. 3 and 4; L=60; k0=3 �wave
number cutoff in angular mask at r=r1�; and �k=1 �width of
wave number cutoff in angular mask�. We find no significant
change in the results for more accurate grids and filtering
parameters.

The convolution m�
� �u��� in Eq. �A1� is evaluated on the

computational grid using Simpson’s rule in both the angular
and radial directions. To deal with the removable singularity
when R=0 in Eq. �A1�, we subtract off the small-R behavior:

K�R� = af�R�/R � a�1/R + ln�R�/b + G� + o�1�, R � 1,

where G is a constant. The resulting integral, at one inter-
face, which we evaluate numerically, is

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

r

r
K

(r
)/

a

z = 0
z = t
effective

FIG. 8. �Color online� Lateral spin diffusion kernel rK�r� /a
multiplied by r to remove the singular behavior and scaled by the
constant a to compare the kernel contributions from each interface
�rKL�r� /aL at z=0 �dashed curve� and rKR�r� /aR at z= t �dash-
dotted curve�� and their combination �r�KL�r�+KR�r�� / �aL+aR�
�solid curve�).
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m� � = 

0

2� 

0

1 af�R�u��� − a�1 + R ln�R�/b�u��

R
r�dr�d��

+ a4E�r2�u�� +
a

b
u��


0

2� 

0

1

ln�R�r�dr�,

u��� � u���r�,��,��, u�� � u���r,�,�� ,

where 4E�r2�=�0
2��0

1r� /R dr� d�� and E is the complete
elliptic integral of the second kind.
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